
OSU-ECE Report NASA 91-01

Annual Report on

NONLINEAR STABILITY AND CONTROL STUDY

OF HIGHLY MANEUVERABLE HIGH PERFORMANCE AIRCRAFT

(NASA GRANT NO. NAG-l-1081)

Date: August 12, 1991

R.R. Mohler, Principal Investigator

Oregon State University
Department of Electrical and Computer Engineering

Corvallis, Oregon 97331-3211

(503) 737-3617/3470

Graduate Research Assistants: S. Cho, C. Koo, R. Zakrzewski

Undergraduate Participants (NSF Support): D. Aaberge, P. Shirkey
Visiting Researchers (ADA-Israel Support): J. Dory, Z. Halevy



TABLE OF CONTENTS

I.

2.

.

.

INTRODUCTION AND SUMMARY ......................................

MODELS AND SIMULATION .........................................

2.1 Basic Nonlinear Dynamics ......................................

2.2 Unear Perturbation Simulation ...................................

2.3 Simplified Nonlinear Models ......................................

ADAPTIVE CONTROL APPROACHES ....................................

3.1 Nonlinear Volterra-Based Control .................................

3.2 Nonlinear MAC Algorithm .......................................

3.3 Adaptive MAC ...............................................

3.4 PIF Control .................................................

CONCLUSIONS AND PLANS .........................................

APPENDICES

A. MATLAB and C Program Comparisons

B. Project Publications

1

3

3

8

8

24

24

32

35

48

50



LIST OF FIGURES

2

3

4

5

10

11

12

13

14

15

16

17

18-23

24-28

28a

29-31

32-33

Angle of Attack Response without Phugoid Mode, =ref = 5°,

6 h = 0.10 rad_tep ............................................

Pitch Rate Response, =ref = 5°, 8h = 0.10 rad-step ....................

Angle of Attack Response, =ref = 5°, 8h = 0.10 rad_tep ................

Pitch Rate Response, =ref = 5°' 8h = 0.10 rad-3tep ....................

Angle of Attack Response without Phugoid Mode, "ref = 5°'

6 h = -3° step ................................................

Angle of Attack Response, =ref = 5°, 8h = -3° step ....................

Pitch Rate Response without Phugoid Mode, =ref = 5°' 8h = -3° step ......

Pitch Rate Response, =ref = 5°' 8h = "3° step .......................

(a) Nonlinear Solution vs. Third-Order Volterra Solution

(b) Nonlinear Solution vs. First-Order (Linear) Solution .................

Second- and Third-Order Volterra Terms ............................

Plunging Force Coefficient ......................................

State-Space Portrait, 6 h = 0 .....................................

State-Space Portrait, 8h = -5° . ..................................

State-Space Portrait, 6h = -9.2 ° . .................................

State-Space Portrait, 6 h = -9.4 ° • .................................

State-Space Portrait, 8 h = -15 ° . ..................................

State-Space Portrait, 8 h = -15.5 ° • ................................

Original vs. Discrete-Time Identified Model ...........................

Step Responses with Nonlinear Controller vs. (Reference) Nominal

Response ..................................................

Stabilator Nonlinear Control Signal ................................

Response to Control Disturbance Impulses ..........................

Step Responses with Linear Controllers vs. (Reference) Nominal

Response ...................................................

Paae

9

9

10

10

11

11

12

12

14

14

15

15

15

16

16

16

17

20

28

29

30

31



34-35

36-51

52-55

56

Nonlinear MAC =, 8 h Responses .................................

Linear MAC =, 8h Responses ....................................

Nonlinear MAC ,,, 8h Responses with Control Weighting ................

Nonlinear PIF Control Structure ..................................

34

37

46

49

iii



1. INTRODUCTION AND SUMMARY

Thepurposeofthisresearchisto developandto applynewnonlinearsystemmethodologiesto the

stabilityanalysisand adaptive control of high angle-of-attack (=) aircraft such as the F18. The present

progress report reviews the research of this project over the first year (actually 18 months with a no-cost

extension).

Considerable progress is documented on nonlinear adaptive control and associated model

development, identification, and simulation. Also, it appears that previously derived results for bilinear

system (BLS) stability [1,2] as well as describing functions [3] can be adapted to the Ostroff PIF controller

and the thrust vectoring component with dead zone. The latter will receive more emphasis in conjunction

with the PIF and other controls studied here.

The analysis has considered linear and nonlinear, longitudinal, high-= aircraft dynamics with varying

degrees of approximation dependent on the purpose as summarized in Table 1. In all cases, angle of attack

(=) or pitch rate (q) has been controlled primarily by a horizontal stabilizer (Sh). In most cases studied, a

linear adaptive controller provides sufficient stability. However, it has been demonstrated by simulation of

a simplified nonlinear model [4] that certain large rapid maneuvers were not readily stabilized by the

investigated linear adaptive control but were by means of a nonlinear time-series based adaptive control.

More details of the research competed by this period thus far are reported in Sections 2 and 3 below and

in previous semiannual reports. With regards to nonlinear simulation programming, it is shown that with C

language it is possible to improve computation speed by two orders of magnitude over the previously used

MATLAB.



Table1. Aircraft Models

o

.

.

4.

°

.

,

Type

Linear perturbations at
= = 5°, 15°,35 °,60 °

Gain scheduled (non-
linear function of ,,)
from 1

Volterra series
a) at reference states
b) general case

Bilinear system
a) continuous
b) BARMA

Polynomial time series

Neural network

Nonlinear ordinary
differential model

Purpose

Local control, check of nonlinear
system, application of well devel-
oped linear control methodologies

Local stability

Gain-scheduled adaptive control
based on well developed meth-
odologies

Simplified description of complex
system

Approximate stability

Nonlinear adaptive control via
cross-correlation and/or d priori
dynamic structure

stability approximation

Simplified dynamic description of
complex system

Nonlinear adaptive control via
model reference identification
(NLMRAC)

Stability approximation

Simplified dynamic description

Potential application to adaptive
control

Accurate approximation to fast
large maneuvers for "final"design
and simulation

Stability

Remarks/Limitations

Only valid for small maneuvers

Special case of types 2-5

May have stability problems
with small number of reference
states and/or large fast ma-
neuvers

Non-orthogonal series approxi-
mation

Sufficiency of 2 or 3 kernels

Large computation time for
adaptation

Large computation time

BJlinearizingcontrollers may be
more practical than linearizing
ones

Polynomial approximation may
be more accurate but more

time consuming than linear or
bilinear approximation

Probably less accurate than 4
or 5 for a given data set but
accuracy may be more robust
outside the available data set

Neglects flexible modes and
other complications



2. MODELS AND SIMULATION

2.1 Basic Nonlinear Dynamics

The dynamic equations of motion are estal_ished by a nonlinear six-degree-of-freedom aerodynamic

model. In general, the aerodynamic-force components referred to as the center of gravity (CG) is denoted

as (X, Y, Z). The aerodynamic angular moment vector about the CG is given by (FI., FM, FN). The thrust

vector T is represented in body coordinates as ('rx, Ty, Tz). Then the four equations with respect to body

axes become

Tx (2.1)t_ = rv - q_sin(e) , X +
m m

9 = p_ - ru . gcos(0)sin(d)) + ---Y *
m m

(2.2)

Z Tz (2.3)W = qu - pv . gcos(B)cos((l>) . -- +
m m

The moment equations with respect to CG and body axes:

I_ = C41Pq + C4=qr + C4_FN * C40FL * C4s (Pz=Ty - Py=Tx) + C40 (Py=Tz _ pz.Ty )
IT, Ixx

(2.4)

¢1 = Cs, Pr + Cs= (r 2 - p2) . FM . (Pz'Tx - P=T=)
Ivy

(2.5)

_"= Cslpq + Cs2qr. C=FL + C40FN * Ces (PPTz - Pz*Ty) * C40 (Px=Ty - PpTx)
Ixx Izz

(2.6)

The Euler equations:

0 = qcos(<l)) - rsin(d>) (2.7)



<_ = p + qtan(0)sin(¢) + rtan(0)cos(¢) (2.8)

where the vector (Px, Py, Pz) denotes the position vector from the center of mass (CG) to the aerodynamic

center (AC) and the vector (Px=, Pye, Pzo) denotes position vector from the center of mass to the engine

thrust center. The constants in the moment equations (1.4-1.6) are functions of the moment of inertia

quantities (Ixx, lyy, Izz, and Ixz)as follows:

c,,,= I_l..,(l#.. -i=') (2.9>

c,, = c,ol=(l=+I= - I#/t,=l..

c,, =c,o(Iz,(i. - i..)- J_')/i,=l..

(2.10)

(2.11)

Ca = C4olxz/Ixx (2.12)

c5,=(I..- I,.)/I,, (2.13)

Cr_ = Ixz/l# (2.14)

c,, =c,o(l. (i..- ,,,)+t_')/i..J,, (2.15)

C6I = 04ol _ (In - I,., - I=)/1=1,-, (2.16)

C. : C=I=/I,-, (2.17)

The quantities X, Y, Z, FL, FM, and FN depend on the aerodynamic coefficients Co, Cy, CL, C_, Cm, Cn as

follows:

0 = q$C 0 (2.18)

L = qsC L (2.19)

4



X -- -Dcos(=) * Lsin(=) (2.20)

Y = qsCy (2.21)

Z = -Dsin(=) - Lcos(=) (6.22)

FL=  sbC,÷ PyZ- P,Y) (2.23)

FM : (qscCm + pzx - Pxz)

lyy

(2.24)

FN = (qsbC. + PxY - PyX)

IT.

(2.25)

is dynamic pressure, s effective area, and a, b, _ moment arms.

Angle of Attack, Sideslip, and Total Speed

With respect to body axes, the angle of attack, =, the sideslip, 13,the total speed, V, are defined as

/ 1227,
V = u 2 + v 2 + w 2 (2.28)

Mathematical Structure of Aerodynamic Coefficients

The mathematical structure of the aerodynamic coefficients are based on the wind tunnel test data

for the high angle of attack vehicle. The aerodynamic coefficients are considered to be functions of the

following control variables as well as angle of attack, sideslip, Mach number, altitude, roll, pitch, and yaw

rates: aileron deflection, rudder deflection, and stabilator deflection. The effects of leading edge flap, trailing

edge flap, speed brake, landing gear, etc., are not considered.



Drag Coefficient:

C o = C0(=,M,h,8.) (2.29)

Lift Coefficient:

c
C L = CLo(=,M,h,8,) + _ [CLq (=,M,h) q + C,. (=,M,h) =]

(2.30)

Pitching Moment:

c IC_ (oc,M,h) q + Cm.. (=,M,h) =Jcm =
(2.31)

Side Force Coefficient:

T° [C_(¢,M,h)p + Cyr(=,M,h)r ]Cy = Cyo(=,B,M,6,,,Sr) + C_(=,M,h) I_ *
(2.32)

Rolling Moment Coefficient:

b
C, = C_o(=,I3,M,8,,,6r) + C_(=,M,h) 13 * _-_ [C_(",M,h)p + Cjr(=,M,h)r ]

(2.33)

Yawing Moment Coefficient:

C. = C.o(¢,13,M,8.,6r,_,) + C.¢(¢,M,h) p + _ [C.p(=,M,h)p + Cnr(¢,M,h)r] (2.34)
2V

6



Rangeof StatesVariablesinAerodynamicCoefficients

= (angle of attack)

p (sideslip) -20" to 20°

M (Mach number) 0.2 to 2.0

h (altitude)

-10= to 90°

0 to 60,000 ft

Contro_ Variables and Their Limits

8_ (aileron deflection)

8r (rudder deflection)

8h (stabilator deflection)

8T (throttle)

-25° to 25°

-30° to 30°

-24° to 10.5°

30° to 131°

Longitudinal Dynamic Equation

Assume that the motion of the airplane can be analyzed by separating the equations into two groups.

The X-force, Z-force, and pitching moment equations comprise the longitudinal equations and the Y-force,

rolling, and yawing moment equations are called the lateral equations. Longitudinal dynamic equations are

given by (2.1), (2.3), and (2.5).

Aerodynamic coefficients are functions of angle of attack, total speed, Mach number, etc.

We can choose state variables as ,,, V, q, and 0 instead of u, w, q, and 0 and we assume that v = 0,

p = 0, r =0,4_= 0.

From relationship between angle of attack (,,) and air speed (V)

U = VCOS=

W = Vsin=

_. = uw- _v _10 o < = <90 °
!

V 2



Fromabove,wedefine normal acceleration by

/i z = Vsin(e - =) + Vcos(8 - ,,)(8 - &)

= Vsin(e - =) + Vcos(e - =)(q - &)

This normal acceleration term can be very important in state feedback and in calculating controller gains

in general.

2.2 Linear Perturbation Simulation

The linear perturbation equations were derived by means of a Taylor series of the above model at the

four reference states corresponding to ¢ = 5°, 15° , 35°, 60°. For the F18 data the short period eigenvalues

are given by _'1,2 = -0.559 -+j 0.337 (damping _ = 0.386, period T = 4.7 sec) and for the phugoid _'3,4 = -

0.0085 - j 0.073 (_' = 0.117, T' = 86 sec). Figures 1 through 8 show example angle of attack and pitch

rate responses to step changes in horizontal stabilator at 5° and at 60° with and without phugoid mode

component in the simulation. Neglecting the phugoid is similar to assuming constant air speed. Note that

the short-period responses (and eigenvalues) agree quite well with NASA simulations [4].

2.3 Simplified Nonlinear Models

The question of interest here was to investigate the possibility of developing an accurate but simplified

nonlinear model that would remain valid ina large range of operating conditions and at the same time would

be capable of rendering nonlinear phenomena occurring in high angle of attack post stall flight regime.

Usual practice in aircraft modeling is to characterize its dynamics by providing so-called stability derivatives

for different operating conditions. Stalford et al. [5] proposed using a Volterra series approach for

longitudinal as well as lateral aircraft dynamics, claiming that obtained models characterize the systems

behavior much better than piecewise linear ones. However, they did not try to find a global model (i.e., valid

for a large range of angle of attack), developing instead four Volterra series submodels obtained from the

expansion around for equilibria corresponding to different ranges of angle of attack. Although their

approximate piecewise Volterra model indeed gives results that agree very accurately with the original model

derived from wind tunnel experiments data, yet this is hardly due to the inclusion of higher-order terms. In
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fact, the contribution of the latter to the final solution is almost negligible. The piecewise-linear model

obtained by omitting higher-order terms from the Volterra approximation is seen to give almost the same

results as the original nonlinear model, as can be observed in Figures 9-10. The comparison in [5] was

made with a piecewise linear model obtained from linearization around equilibria different than those used

for Volterra series expansion, although the approximation of plunging force coefficient resulting from such

a linearization seemed much better than from first terms of Volterra series expansion. This, however, does

not mean that nonlinear modeling of aircraft dynamics has no advantages over piecewise linear models.

The conclusion that can be drawn is merely that while plecewise linear models may accurately predict

complex nonlinear behavior they are very sensitive to the choice of points of linearization and that the best

piecewise linear fit to the curve of one of the model coefficients does not necessarily have to give the best

dynamical model.

The simplified longitudinal aircraft dynamics model described in [5] was taken as a basis for

investigation of nonlinear phenomena that may occur in high angle of attack regime of flight. The model

is as follows:

where:

OC

& = q + 9.168%(,,) - 1.8336(8, *

_1 = 5.73(¢ - 1.58) + 2.865

= angle of attack (deg)

q = pitch rate (deg/s)

6h = elevator control ((:;leg),horizontal stabilator

7°) + 7.361904
(2.35)

Cz(,,) = plunging force coefficient (Figure 11)

The nonlinearity is seen to come from the angle of attack. The state plane portraits of the system for

different constant values of control are shown in Figures 12-17. Stable equilibria of the system correspond

to values of control less than 9.49 or greater than 12.24 or to angle of attack less than 14.74 or greater than

18.87. In the region between those equilibria an unstable and a stable limit cycle occurs. Interesting

phenomena can be observed for the zone near to the onset of unstability. As seen in Figures 15 and 16,

the equilibrium is still stable and at the same time two limit cycles exist, the inner of which is unstable and

13
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separates the areas of attraction of the equilibrium and of the stable limit cycle. So for different values of

control and state variables the behavior of the system is essentially different. Some Investigation was made

about possible ways of characterization of such a behavior by means of a global discrete time nonlinear

model. A proposed form of the model was as follows

=(k+l) = _ p_¢(k)aq(k)lu(k) '
iJ,_

q(k+ 1) = _ p_ =(k)' q(k)l u(k)'

(2.36)

where the summation Is over all possible products of powers that give as a result exponent not greater than

N. Of course, for a spaciflc model only some of the terms will be taken - the choice based on d pried

knowledge about the systems nonlinearities and the significance of a given coefflcient's contribution to the

approximation.

In order to identifythe model of form (2.36), the experimental data was first collected. The experiment

consisted of observing the outputs of the system (given by (2.35)) subject to random steps of control. To

capture such phenomena like limits cycles in the data, the steps were rather long - 40 sec. There were 64

such steps. The time discretlzatlon was chosen to be 0.1 se¢. As a result, the identiflcatlon data contained

25,600 points in a state plane for 64 values of control. Then, for a few arbitrarily chosen models of form

(2.36), the parameters were found by minimization of the quadratic criterion

17



minp (_ (y(k)- 9(k)) 2) (2.37)

where y(k) stands for = or and _(k) is obtained from (2.36). Among the models tried, the most accurate

approximation of (2.35) was given by the following one:

=(k.l) = pl,,=(k) + P2==2(k) * Ps,,=S(k) +

p4,,q(k) + ps=q(k)=(k) + pe,,q(k),,2(k) . pT.q(k)¢3(k) +

Ps,,u(k) + Pe,,u(k)¢(k) + Pl0U(k)e.2(k) + Pll,,u(k)¢S(k) + P12,,

q(k+l) = plq=(k) . p2q,,2(k) * p_=S(k) +

p_q(k) + psqq(k)=(k) + p_q(k)=i(k) + P7qq(k)¢S(k) +

p_u(k) + p_u(k)=(k) + ploqu(k)=2(k) + pllqU(k)=3(k) + P12q

(2.38)

with the following values of parameters

Pl= = 8.4320"10"1 Plq = "5"3094"10"1

P2,, = 6.7979"10"1 P2q = -1.1410" 10-3

P_ -- "1-2527"10"4 P3q = 4"3451"10"6

P4= = 9.6900* 10 -2 P4q = 9.7427* 10"1

PS= = 5.8142"10"4 PS<:I = "4"7215"10"5

P6= = "5"4326"10"5 Psq = -1.8024"10 -5

107= = 1.3799"10"6 P7q = 6"3993"10"7

PS= = "2"2902"10"I Psq = -8"2199"10"1

Po_ = 2.9968* 10 -2 Pgq = 2.3537"10 -3

PlO= = -1.2158"10"4 PlOq = "5"7795"10"5

P11= = 4"2410"10"7 Pllq = "2"6468"10"7

P12,, = -3"9140"10"1 P12q = 3"4865"10"1

Although some of these values seem negligible, it should be noticed that with the values of ,, going to 20

the terms multiplied by the coefficient in question become of order 105 which makes their contributions

significant enough. The identified model (2.38) was tested by calculating its responses for the same initial
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conditions and values of control as used to get state space portraits on Figures 12-17. The comparison

between the original data obtained by simulation of (2.35) and the identified model behavior is shown on

Figures 18-23. It can be seen that limit cycles are accurately rendered by the model, as well as the stable

zone behavior, although large discrepancies occur with the control values close to the stable/unstable zones

border. These inaccuracies may be due to insufficient identification data and/or improper choice of

nonlinear terms in (2.36). This can be helped by testing the hypotheses about the significance of every

particular coefficient based on residuals with and without it. This procedure could be performed once for

a given aircraft and the values of resulting set of parameters could then be updated based on on-line

identification during the flight itself.

The model (2.38) was then used for developing a nonlinear controller for (2.35).
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3. ADAPTIVE CONTROL APPROACHES

3.1 Nonlinear Volterra-Based Control

As the Volterra series representation of the nonlinear plant dynamics is a natural generalization of the

linear system characterization by impulse response or by transfer function, it seems natural to incorporate

the concepts of the Volterra sedes model into the nonlinear control Although a lot has been published on

mathematical theory of Voiterra sedes, including existence, realization, and (to a much smaller extent)

identification, very little has been done to apply Volterra series to control. In some papers (e.g., [6]), Volterra

sedes serve only as a conceptual starting point from which a switch follows to discrete time nonlinear time

sedes. Among a few that attempt to build Volterra series controllers, the majority of them deals with discrete

time systems. The controllers proposed are mainly predictive ones where the control is obtained by solving

the Nth-order polynomial equation [7,8]. The model is given in the form of discrete time kernels which

require a tremendous amount of data. The kernels are, of course, truncated at certain time value which

results in characteristic jump in the control and the output step response after the time corresponding to

the truncation.

Continuous time controllers based on Volterra series were systematically developed in [9] with

formulae for the controller's kernels given those of the plant and of the desired feedback system. In

particular, the problem of so-called exact feedback linearization was solved here. However, those formulae

are of limited practical value because of the properties of Volterra series under feedback. The problem is

that even finite (e.g., second-order) Volterra series of the open loop results in infinite Volterra series of the

closed loop. This makes it necessary for the controller to include theoretically an infinite number of

compensating terms even for a quadratic system. The same problem for the discrete time systems was

treated in [10]. Instead of time kernels, they used multidimensional Z transforms and they arrived at the set

of formulae equivalent to those in [9]. However, they provided also a very elegant transformation of the

exact linearization problem solution which results in a controller requiring only as many Volterra terms as

there are in the controlled plant. The control system obtained in [10] is shown below.
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u:(z)
D1(z ) __ Plant

Y(z)

Hi(z)"I

H3(z1,z ,z3)

ll_aQll*eoo_

L-- Hw(zI,z2,•.. F

H1,_.H N are the multidimensional discrete transfer functions of the controlled plant and D 1 is a linear

controller designed only for the linear part of the plant, Le..

D,(z) = e_(z)/(H, (z) (1 - G,,Xz) ) (3.1)

where Gr=f is the desired transfer function from U¢(z) to Y(z). Thus, with exact knowledge of the nonlinear

part of the plant's dynamics, the whole design reduces to the choice of the linear controller using any of well

known methods. The inner feedback loop will compensate for all nonlinearities. One of the drawbacks of

this method Is the necessity of invertingthe linear part of the plant However, if only the linear and nonlinear

parts exhibit the same time lag this operation does not represent a major problem. In the configuration of

controller shown above finding a control amounts then to solving Nth-order polynomial equation in u. Of

course, the problem arises whether and how many solutions exist to this equation. In the case of multiple

solutions a rule of thumb would be to choose the one within the operating range of control values. In the

lack of solutions (e.g., due to inaccurate modeling), a possible remedy could be, for example, to take the

real part of a complex root. (In a few simulations performed with very inaccurate models this method

worked surprisingly well.)

One very attractive feature of this controller is that its structure makes it possible to utilize it not only

with models represented in the form of Voiterra sedes, but in fact with any model with easily divided linear
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andnonlinearpartsofthedynamicequations. Let us take, for example, a nonlinear time-series model of

the form

y(k) = L(y(k-1) .... y(k-M),u(k-1),...,u(k-M)) +
(3.2)

N(y(k- 1),-,y(k-M),u(k- 1),...u(k-M)

where L is the linear operator and N Is the nonlinear part consisting of higher-order terms (i.e,. with all first-

order partial derivatives over u and y vanishing at zero). Now the structure of the controller will be as

follows:

U:(k) E(k) UL(k ) Y(k)

X(k)

L-I(,)'L, I N(.)
J" I ....

U(k)
-,-.I I
I "I_.Planti
I
I

This diagram Is equivalent to the following algorithm for the calculation of the control value at the moment

k.

a)

b)

calculate the output of the linear controller uL(k)

calculate the predicted value of the output at the moment k

c)

9(k)= L(y(k-J),...y(k-M),u(k-1)....u(k-M))

N(y(k- I ),...,y(k-M),u(k-1),...,u(k-M))

solve the equation for x(k)

(3.3)

N(9(k),y(k-1),-,y(k-M+ 1),uk(k)-x(k),u(k-1),_,u(k-U+ 1)) =

= L(x(k),x(k-1),...,_k-M+ 1),_k),y(k-1),_,y(k-M+ 1))

(3.4)
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d) calculate the control

u(k) = u (k) - x(k)

It is worth noting that in such a discrete time realization there is one more feedback loop interaction than

shown on the diagram. The models in the inner feedback loop do not use the previous values of output

estimates 9(k-1), 9(k-2) .... (as would be necessary in the continuous time case) but the real measured values

of output. So it becomes clear that the above algorithm becomes a sort of prediction controller which tries

to estimate the effects of the previous controller which tries to estimate the effects of the previous controls

knowing the previous values of outputs and then to adjust the current value of control so that the nonlinear

part of predicted output is canceled.

Nonlinear Control of the Longitudinal Aircraft

The discrete time nonlinear control algorithm presented above was used for angle of attack

stabilization and control of the nonlinear longitudinal aircraft model described in Section 2.3. For the

purpose of controller design, the model (2.38) was used with the parameter set derived from an off-line

identification process. The linear controller D1 was designed for the linear model with controlled output

chosen to be

eL(k*1) = pl,=L(k) * p_,q,(k) + ps,,u(k)

qL(k+l) = plq=t.(k) * p4qqL(k) + p_u(k)

The design was performed to obtain the closed loop behavior of the form

G(z) = 0.05/(z 2 - 1.6z . 0.65)

in order not to cancel the zero of the plant, the observer polynomial (z-O.7) was also introduced. The

algorithm for the control value u(k) is as follows. First the estimate of the output at moment k is calculated.
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_(k) = p,,,,,, * p=,=+= + pa,,=_ +

P_,ql + Ps, ql=l + Pe=q+=_ + PT,ql=_ +

PkUl + P=-ul=I + Plo,,Ul=_ + P11,,ul=_ + P12,,

P4qql * Psqql=l + Peqql=l= + P?qql=) +

paqUl + p=qul=l + Pl0qUl=_ * PllqUl=) + Pl2q

where "1 = =(k-l), ql = q(k-1), u1 = u(k-1).

The linear portion of this estimate will be

_'t(k) = Pl=_'I + P_,ql * Pe=Ul

_IL(k) = Plq=l * P+qql + paqUl

and the nonlinear portion

aN(k) = ,_(k)- _L(k)

4.(k) = 4(I<)- 4,(I<)

Then the nonlinear portion of the output estimate in the moment k+ I given control u(k) is equal:

&N(k+l) = _.(k+l) - _L(k+l)

= Pio(=-=t_ + p===3 + p_,(q_q_ + Ps.q, + P,=q=_'+ PT,,q=3 +

Pg-u + Plo, u¢2 + Pll= u¢3 + Pi_,

where = = _(k),o% = _tL(k),q = _l(k),qL = _IL(k),u = u(k).

The control value comes from the equation

&N(k*l) = Pl,_N(k) + P_=_iN(k) + ps,,(UL(k) - u(k))

(3.5)
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whichfinally yields a solution

u(k) = Pe=UL(k)- (p2` '2 * p3" a + Ps"=q * Pe"  '2 + PT'Cl=3+ P12.) (3.6)
(P=. * Pg. + Pl0. *

with &(k) and _l(k) taken form (3.5). It is seen that if there are no nonlinearities in the model the control

reduces to a regular linear controller u = uL.

A number of simulations was run to test the controller performance, especially in the unstable range

of angle of attack. Figures 24-28 show the response of the system to the step change of the setpoint of

angle of attack. The resulting trajectories are compared with desired trajectories following form the linear

controller design. It can be noticed that modeling inaccuracies do not achieve prefect model following but,

nevertheless, the system is successfully stabilized and the transients are very smooth and without significant

overshoots. By different choice of the reference model it is possible to obtain much faster, but at the same

time much more "nervous"transients. The elevator control as shown as an example on Figure 28a is also

relatively smooth and, worth noting, its values doe not at all come out from the range corresponding to the

terminal equilibria. This cautiousness of the controller is the main reason for rather slow regulation process.

It also can be noticed that some kind of linearizing the closed loop system was indeed accomplished

because the shape of trajectories is very similar regardless of the zone in which the regulation takes place.

The reaction of the system for an input disturbance in the form of an impulse of magnitude -1° additive to

the control (i.e., sudden displacement of elevator) is depicted in Figures 29-31. The performance is not

astonishingly good but still the task of stabilization and disturbance rejection is successfully fulfilled. Of

course, purely linear controller constant on the whole operation range is not able to stabilize and control

the plant as can be seen in Figures 32-33. The linear model used for its design was obtained by

identification from the same data as in the case of model (2.38).

Conclusions

The conclusion that comes from the above simulation experiments is that it is possible to model

nonlinear aircraft dynamics in the form of nonlinear discrete time model containing a limited number of

power nonlinearities. The proposed nonlinear controller structure was shown to give quite satisfactory
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results even with the model that was far from perfect. This is, however, a purely empirical result and

theoretical investigation of such properties of the discussed controller like stability sensitivity of modeling

errors would be in order. Furthermore, a more accurate discrete time nonlinear presentation of nonlinear

aircraft dynamics is necessary.

All simulations included In this section were obtained using PC-MATLAB and its Runge-Kutta

integrating routine. The minimization of model square error for purpose of identification was performed

using Nelder-Mead nonlinear simplex method coded in C and compiled by TURBO-C compiler.
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3.2 NonlinearMACAlgorithm

Modelalgorithmiccontrol(MAC),described,for example, in [11], consists in general in solving the

model equation for the value of control necessary to obtain required value of output. Usually this desired

output trajectory is generated from the setpoint by means of a reference model. In case when this model

is linear the algorithm in essence becomes a linearizing one. More precisely, the equation to be solved is

Yr.(k+1) = yr,_(k+l) + (y(k) - ymod(k)) (3.7)

where Yrefis a desired reference output and Ymodis the prediction of the output based on the model of the

plant. The correction term (y(k) - Ymod(k)) takes into consideration the possible error of the model and, in

fact, introduces integral action into control. In a situation when y(k) is not yet available at the time when

the control u(k) is computed, as is often the case due to time delays and/or time needed for solving (3.7),

the correction term may be taken as (y(k-1) - Ymod(k-1)), and Ymod(k+l) must be based on the

measurements from moment k-1 which means that the algorithm becomes two-steps-ahead.

In case of model (2.35) with the contro|led output assumed to be the angle of attack the algorithm

takes the form:

cry(k+1) = =._o,j(k+l) + (=(k) - =rnod(k)) (3.8)

with

= p-r,l,(k) (3.9)

_(k) = [=, =2, ¢3q, q,,, q=2, q=3, u, u,', u¢ 2, u,_3, 1IT(k) (3.10)

As the control at the moment k must be already computed at moment k the values of =(k) and q(k) are not

available for its computation so their estimates must be used instead. The correction term is taken to be

the prediction error from the moment k-1 and the equation becomes

cr_(k+l) = _.mod(k*l) * (=(k-l) - 0=r.od(k-1)) (3.11)
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with

_,._(k÷ 1) = p[ _)(k)

_(k) = [_, a 2, _.3,q, q_., q_2, q_a, u, u_, u ;,2, u_ a, 1]T(k)

a(k) = p='r_(k-1) + (=(k-l) - Cmd(k-1))

T
_(k) = pq _(k-1) + (q(k-1) - qmod(k-1))

The controller is assumed to know the values of angle of attack and of pitch rate at the moment k-1. Then

it estimates their current values =(k) and q(k) taking Into consideration previous prediction errors and based

on them it calculates the control required to achieve =ref at the moment k+ 1. The value of control is found

as:

u(k) = _r - Pl,, _" - P2=_t2 - P_,,_ - P,_(_ - Ps,,__ - P6,,c`1;2 - PT,,_&'3 - Pl== (3.12)
Ph +lPg,,= Plo,,_2 + P11,,_'3

where

_, = =_(k+l)

and & = _.(k), _1= _l(k) as described above.

-(=(k-l) - =._(k-1)) (3.13)

This algorithm was simulated for the plant (2.35) with model (2.38) and its parameter values. The

results of the simulations are seen in Figures 34-35. The reference trajectory was chosen to be

1/(z 2 - 1.6z + 0.65). The actual output of the plant is seen to follow the reference very closely, even though

the region of operation was that of the most severe nonlinearities. The control action is also remarkably

smooth. It should be pointed out that for all simulations presented here setpoints of = correspond to

equilibria with some negative pitch rate and in reality would result in some decrease of pitch angle, which

is not included in the model (2.35). Thus, the conditions simulated are somewhat fictitious from the

aeronautical point of view. Nevertheless, for the purpose of evaluating the performance of control strategies
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theymayprovide useful information about the behavior of the system in nonlinear regime. However, more

detailed study is required.

3.3 Adaptive MAC

The discrete time nonlinear state space model (2.36) describes the behavior of the plant (2.35) quite

accurately in the entire region of operation. Very often, however, such a global model is rather difficult to

fit and, consequently, one should look for local approximations, depending on the current operating

conditions. In such a situation, adaptive control seems to offer an ideal solution. For a given model

structure the controller identifies its local parameters and appropriately adjusts its action. At the same time

it can compensate for the changes of the plant "true" global parameters. Linear adaptive control has been

used for nonlinear systems trying to modify the first-order approximation depending on the operating

conditions treating the nonlinear system as a time-varying linear one. In general this approach requires that

the plants parameters change slowly, which excludes the case of rapid maneuvers. Nonlinear adaptive

control is believed to be a proper solution to this problem. While it may be difficult to find a suitably simple

global approximate model, local behavior may be still highly nonlinear thus causing the linear control to fail.

The algorithm discussed in the previous section was made to be adaptive, or self-tuning, by

incorporating on-line identification of the parameters.

implemented in the form taken from

A recursive least squares (RLS) algorithm was

p(k) = Q(k-2) $(k- 1) (3.14)
Z(k-1) + _(k-1) T Q(k-2) _(k-1)

Q(k-1) = 1 /Q Q(k-2)$(k-1)_(k-1) TQ(k-2) /Z(k-1) (k-2) - ,1.(k-1) + _(k-1) T Q(k-2) _(k-1))
(3.15)

e(k-1) = y(k) - pT 4)(k-1) (3.16)

where y may denote = or q and p may stand for p= or pq, respectively. The forgetting factor _. was

introduced to enable the algorithm to change the estimates of parameters with the change of operating
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Toavoidthe unlimited growth of covariance matrix Q at the steady state when the input is notconditions.

persistently exciting, the variable forgetting factor policy was implemented:

_,(k) = 1 - e e(k)2 (3.17)

where e(k) is the current prediction error, e(k) is the acreage prediction error from last 10 samples and e

is equal to 0.01. As an additional precaution the trace of the covariance matrix Q was monitored and Q was

reset to diagonal matrix whenever the threshold value was exceeded. Starting values of parameters were

taken to be as in (2.36).

Figures 36-37 show the simulation resultsof the above algorithm for the same reference trajectory and

initial conditions as discussed in the previous section. Figures 38-43 display the simulation results for

another reference model specified as 1/(z 2 - 1.8 + 0.82). Remarkably exact following of the reference

trajectory may be observed, although, surprisingly enough, the performance is slightly worse than in the

nonadaptive case. Most probably, this is due to the fact that prediction error now changes much more

quickly because of the ongoing identification process. Thus, approximating the term (y(k+ 1) - Ymod(k+1))

by (y(k-1) - Ymod(k-1)) may worsen the behavior of the system as two values of Ymodno longer correspond

to the same parameter vector. Since the on-line identification process assures (at least in principle) that the

prediction error should asymptotically converge to zero, it is possible that the correction terms in _ (k), c_(k)

and in control equation (3.11) ought to be omitted. This will be soon verified in proper simulation

experiments.

The performance of the adaptive nonlinear MAC controller was compared to the linear one, which

uses the same control strategy but with strictly linear model being identified and used for the calculation of

the control action. The simulation results are shown in Figures 47-51. The initial conditions and reference

trajectories were exactly the same as the ones for the nonlinear case in Figures 36-44. The starting values

of model parameters were taken from off-line identification over the entire region of interest (similarly to

those of model (2.35)). Clear difference between the performance of linear and nonlinear controller can be

seen in Figures 40-41 and 48-49, particularly in control action at the setpoint = = 15°. The linear identifier

has
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obviousdifficultieswithfittingtheparametersof a linearmodelto thebehavioroftheplantwhichis clearly

nonlinear in this region (see Figure 47). As a result, the control starts oscillating for a while. Also, on the

other plots it is seen that the nonlinear algorithm results in control plots that are more smooth, although they

still contain one-pulse spikes. To eliminate these spikes weighting of the increments of control was

introduced into the algorithm. The controller is designed to minimize the one step ahead cost function:

J = (Ymod(k+l) - yr(kl))2 + p(u(k) - u(k-1)) 2

with Ymod,Yr as before. Minimization of (3.18) with respect to u(k) yields

(3.18)

u(k) = (Yr- a)b * pu(k-1) (3.19)
b 2 +p

where

a = pl.= + p2=¢2 + p3,,=3 + p_,q + Ps,,q= + Ps.q¢2 * PT..q=a + P12,,

b = Pk + 1:)9.= + Pl0=== + P11."a

Obviously, for p = 0 (3.19) reduces to (3.12) while for p = = we have u(k) = u(k-1) = const. Results of

simulations of this algorithm with p = 0.02 and p = 0.05 are shown in Figures 52-53 and 54-55, respectively.

The trade-off between the accuracy of tracking and control smoothness may be observed. For p = 0.05

the control contains no one-pulse spikes and, in fact, the accuracy of reference following deteriorates only

slightly.

Conclusions

Model algorithmic control based on an approximate discrete state space model works very well for

the plant (2.35) with angle of attack as the output. Its adaptive version displays behavior slightly inferior to

the nonadaptive case, which may be a result of inclusion of a probably unnecessary corrective term in

(3.11). A control increment term in the cost function makes it possible to obtain more smooth control

trajectories while retaining satisfactory performance. Previous research failed to find good global input-

output nonlinear time-series approximation for the plant (2.35), so a state space model was used. It seems,

however, that
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locally such approximations should be possible thus allowing for application of adaptive MAC algorithm

based only on input-output data without using state measurements. Theoretical research as to robustness

of the algorithm with respect to state or measurement noise also will be conducted and relative to more

complex airframe simulations.

3.4 PIF Control

The proportional plus integral plus filter (PIF) control, which has been developed by Ostroff at NASA-

Langley, has shown remarkable success in simulations as demonstrated in [4] and more recent work at

NASA. Right tests of a more refined PIF controller are planned for an experimental high-alpha aircraft.

Basically, the design incorporates linear optimal (quadratic performance index) control about multiple

equilibrium conditions with controller gain scheduling in conjunction with a tracked command model. We

are planning to study a simplified version of this controller for possible stability limitations from certain rapid,

high-alpha maneuvers. We hope to develop a nonlinear adaptive PIF controller and compare its

performance with the present NASA PIF controller. An example of this configuration is shown in Figure 56.
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4. CONCLUSIONS AND PLANS

Research inthe first phase of a three-year program suggests that nonlinear adaptive control (such as

those based on nonlinear time series or Volterra kernels) can provide improved stability over that of simple

linear adaptive control. To make this conclusion more conclusive, however, future research will involve more

complex airframe models and simulations. Also, more complex linear and nonlinear adaptive controllers,

including PIF designs, will be studied for stability and performance limitations. Comparisons of the studied

nonlinear control algorithms and the NASA-Langley PIF design (Ostroff) are planned.
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NONLINEAR STABILITY AND CONTROL STUDY OF

HIGHLY MANEUVERABLE HIGH-PERFORMANCE AIRCRAFT.

NASA Project Progress Report.

by

ZION HALEVY **

E.C.E, Oregon State University, Corvallis Or.

JULY 16, 1991

1. SUMMARY :

The object of this report is to summarize part of the

programming work done on nonlinear adaptive control model

of aircraft operating in highly nonlinear regimes with large

values of angle of attack.

Two models (Cho+and Stalford*models) were simulated on

PC-MATLAB and converted to "C". Comparison of the simulation

time indicated that performance using the "C" algorithm was

increased by two orders of magnitude. Thus enabling detailed

parametric analysis in short time span. The fundamental

structure of C programs can be also utilized extended to

future simulator models.

* * On sabbatical leave from ADA, Israel.

+ Refers to the full nonlinear longitudinal airframe model (Section 2.1

of Annual Report)

* Refers to approximate nonl1_ear model of Reference 3.
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3. MATLAB SIMULATIONS.

3.1 Cho model [2]

An original MATLAB program using an Euler integration

scheme (BLINI.M ,COF.M -written by Cho 1991 based on Cao

et al 1990) was analyzed and restructured in order to enable

general purpose use and faster execution time.

The changes performed on the original programs are as

follows:

a) Removal of the close-loop BARMA controller (Cho 1990)

from the main program model BLINI.M and writing of a

general purpose structure controller sub program.

b) Modification and improvement of the structure of the

program, in particular modification of the sub program COF.M

(calculate seven aerodynamic coefficients) which was called

at each iteration.

The final programs named ZBLINI.M and ZCOF2.M are in

the attached disk (see Appendix 3).

3.2 Stalford model. [3]

A model taken from Stalford 1989 was written in

PC-MATLAB with the same general purpose structure noted

above . This work was done jointly with J. Dory.

The final programs named ZRUN5.M ,ZIN5.M and

ZMAIN5.M using ODE45.M (Runge-Kutta 4th and 5th order

integration function for numerical solution of ordinary

differential equations) are on the attached disk.

The results from the MATLAB simulation ( Appendix 2)

indicate that the numerical model is identical to that

presented by Stalford 1989
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4. "C" PROGRAMS.

4.1 Cho model

The final MATLAB programs (ZBLINI.M ,ZCOF2.M) was

converted to the "C" language (ZBLI3.C ,ZCOF3.C and

ZBLI3.EXE -executable program).

The final programs are in the attached disk (see

Appendix 3).

4.2 Stalford model.

The final MATLAB programs (ZRUN5.M ,ZIN5.M,ZMAIN5.M,

ODE45.M ) was converted to "C" language (ZRUN5.C,

ZIN5.C, ZMAIN5.C, ODE45.C and ZRUN5.EXE -executable

program) .

* xxx.M / xxx. C extensions denote MATLAB and "C" programs

files respectively.
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5. Comparison between MATLAB and "C" proqrams

Matlab is an interactive program that aid with fast

performence scientific and engineering numerical

calculation.

Matlab allows you to solve numerical and simulation

problems in a fraction of the time it would take to write

in other languages like "C" or Fortran.

Furthermore, problem solutions are expressed in almost

exactly the same way as they are written mathematically.

It is a complete integrated system including graphics,

programmable macros,an interpreter and analytical

commands.

"C" and Turbo C++ has fast and efficient compiler that

enables transfer application programs to other systems.

The MATLAB is an interpreter and hasn't a compiler like

"C",so the "C" language is more efficient .

The MATLAB simulations included in this report were

obtained using PC-MATLAB version 3.2 .

5.1 Cho model.

Comparison of performance are summarized in Table i.

Appendix 1 consists of examples plots from both MATLAB

"C" in the same conditions as follow:

and

Euler integration step= 0.05 [sec] (the desired accuracy).

tfinal= I0 [sec] (final value of t).

tO= 0 [sec] (initial value of t).

-5-



TABLE i: Cho model.

PROGRAM CONTROLLER FLIGHT TIME SIMULATION TIME

INPUT dh [SEC] [SEC]

I. BLINI.M ,COF.M

(original prog.)

VARIABLE

(Cho)

i0.0 1068

2. BLINI.M, ZCOF2.M

(Improve COF.M)

VARIABLE

(Cho)

i0.0 580

3.ZBLINI.M,COF.M CONSTANT i0.0 555

(Remove controller

from main prog,

original COF.M)

-I.0

[deg]

4.ZBLINI.M, ZCOF2.M CONSTANT i0.0 364

(Remove controller

from main prog,

improve COF.M)

-i.0

[deg]

5. C PROGRAMS

ZBLI3.C ,ZCOF3.C

CONSTANT 10.0 6

(Remove controller

from main prog.

improve COF.M)

-i.0

[deg]
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5.2 Stalford model.

Comparison of performance are summarized in Table 2.

Appendics 2 consists of examples plots from both

MATLAB and "C" in the same conditions as follow:

ODE45 step integration= 0.i [sec].

ODE45 tolerance= l.e-4 [sec] (the desired accuracy).

tfinal=T FINAL=I3.6565 [sec] (final value of t).

tO= 0.45,T FINAL [sec] (initial value of t).

TABLE 2 :Stalford model.

PROGRAM CONTROLLER FLIGHT TIME SIMULATION TIME

INPUT dh [SEC] [SEC]

1.MATLAB programs:

ZRUN5.M ,ZMAIN5.M

ZIN5.M .

VARIABLE

STEP

(ZIN5.M)

7.5 1866

2. C PROGRAMS:

ZRUN5.C ,ZMAIN5.C

ZIN5.C j

(and ZRUN5.EXE)

VARIABLE

STEP

(ZIN5.M)

7.5 6
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK.

6.1 Conclusions

Camprison of MATLAB and "C" simulation reveal that

performance was increased by two orders of magnitude by

the "C" simulation .

MATLAB is a "package" for development stage but for

detailed parametric analysis the "C" performance better.

6.2 recommendations.

a) Using of PC-MATLAB version 3.5 (for 386 computer) for

first step developing of the simulation.

We used in PC-MATLAB version 3.2 for our simulation

but the new version 3.5 (for 386 computer) is faster

at least four times (it hasn't limits imposed by 16

bit nature of 80286/8086 )

We used also PC-386/20 Epson computer with 80287

numeric coprocessor chip.

b) Using of MATLAB MEX-files enables to combine "C" and

MATLAB programs

MEX-file produce from compiled "C" linked into .EXE

files and renames to .MEX extension.

So it is possible to call your own "C" programs from

MATLAB as if they were built-in MATLAB function.

Speed improvement of up to a factor of 25 are possible

in this way

c) Using of "C" (turbo C++ Ver 1.0 ) simulation for

parametric analysis.

d) Using at Cho model in ODE45.M Runge-Kutta integration

function instead of Euler integration scheme to get

better accuracy of results.
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9. APPENDICES

i. Cho model : examples plot ( Fig 1 - Fig 6 ).

2. Stalford model : examples plot ( Fig 7 - Fig i0 ).
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APPENDIX 3

The programs description in the attached disk :

i. Cho model [21.

a) MATLAB programs.

BLINI.M- Original main program model (including the Cho

close loop controller) [2].

COF.M - Original function called by main program (BLINI.M)

to calculate seven aerodynamic coefficients [2]

ZBLINI.M-The final main program after the changes

performed on BLINI.M (see 3.1).

ZCOF2.M- The final function after the changes performed on

COF.M (see 3.1).

b) "C" programs

ZBLI3.C- The final MATLAB program ZBLINI.M converted to "C"

ZCOFS.C- The final MATLAB program ZCOF2.M converted to "C".

ZBLI3.PRJ-"C" project (link) file for ZBLI3.C .

ZCOF3.H- "C" header file for ZCOF3.C (prototype).

ZBLI3.EXE-The final executable program for Cho model.

RES.RES- The output results file (alpa,V,q,teta,dh,t).

ZLCI.M -The program used for graphic program (at MATLAB).

to load RES.RES.

ZPCC5.M -The graphic program called by ZLCI.M.

ZPC51.M -The graphic program called by ZLCI.M.

2. Stalford model [3].

a) MATLAB programs.

ZRUN5.M- The macro running program that give initial values

to the model function (ZMAIN5.M) and also graphic

program (zpS.m).
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ZMAIN5.M-The function describes nonlinear aircraft

equations in the form to be used by ODE45.M

(integrating routine) called by ZRUN5.M.
ZIN5.M -The function describes input controller called by

ZRUN5.M , the output of the function is the value

of the control (the elevetor angle).

ODE45.M -Integration of a system of ordinary differential

equations called by ZRUN5.M .The function is using

4th and 5th order- Runge-Kutta formulae .

ZP5.M -The graphic program called by ZRUN5.M.

b) "C" proqrams .

ZRUN5.C- The final MATLAB program ZRUN5.M converted to "C"

ZMAIN5.C-The final MATLAB program ZMAIN5.M converted to

llCl! ,

ZIN5.C- The final MATLAB program ZIN5.M converted to "C"

ODE45.C- The final MATLAB program ODE45.M converted to "C"

ZRUN5.PRJ-"C" project (link) file for ZRUN5.C

ZMAIN5.H- "C" header file for ZMAIN5.C (prototype).

ZMAIN51.H- "C" header file for ZMAIN5.C (decleration).

ZIN5.H- "C" header file for ZIN5.C (prototype).

ODE45.H- "C" header file for ODE45.C (prototype).

UTIL.C-Utility program for ODE45.C .

UTIL.H- "C" header file for UTIL.C (prototype).

ZRUN5.EXE-The final executable program for Cho model.

RES.RES- The output results file( alfa, V, q, teta,

delta_h, tn).

ZLC.M -The program used for graphic program (at MATLAB)

to load RES.RES.

ZP5.M -The graphic program called by ZLC.M.

ZP51.M -The graphic program called by ZLC.M.
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(Supported Wholly or in Part by NASA Grant)
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Conf. Sys. Modeling and Optimiz., Zurich, 1991 (to appear).

R.R. Mohler, V. Rajkumar, R.R. Zakrzewski, "Nonlinear Time-Series Based Adaptive Control

Applications," Proceedings, IEEE Conf. Decision & Control, Brighton, 1991 (to appear).

R.R. Mohler, Nonlinear Systems: VoL 2 Applications to Bilinear Control, Prentice Hall, Englewood

Cliffs, NJ, 1991.

R.R. Mohler, V. Rajkumar, R.R. Zakrzewski, "On Discrete Nonlinear Self-Tuning Control," Proceedings,
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